Поиск по сайту:
Главная страница » Каталог статей » Статьи о погрешности » Денисенко Виктор, "Суммирование погрешностей измерений в системах автоматизации"

Суммирование погрешностей измерений в системах автоматизации




Внимание: На данной странице выложена только часть текста статьи. Статью полностью, с формулами и графиками можно скачать и прочитать ТУТ

Виктор Денисенко

Измерительные каналы систем автоматизации могут включать в себя несколько средств измерений различных типов, например датчики, измерительные преобразователи, модули  аналогового и частотного ввода и вывода [1]. Погрешность такой системы желательно определять экспериментальным путём [2], однако это не всегда возможно или целесообразно.
В таких случаях используют расчётный метод.

Исходные данные для расчета

Исходными данными для расчёта погрешности измерительных каналов являются [3]:

• метрологические характеристики средств измерений;

• погрешность метода измерений (методическая погрешность);

• характеристики влияющих величин (например, окружающая температура, влажность);

• характеристики измеряемого сигнала.

ГОСТ 8.009-84 [4] для всех типов средств измерений устанавливает следующий комплекс метрологических характеристик, который указывается в эксплуатационной документации на средства измерений:

• систематическая составляющая основной погрешности;

• среднеквадратическое отклонение случайной составляющей основной погрешности;

• дополнительная погрешность для каждой из влияющих величин;

• динамическая погрешность.

Некоторые средства измерений обладают гистерезисом — для них, кроме перечисленных погрешностей, указывается случайная составляющая основной погрешности, вызванной гистерезисом.

Основная погрешность может быть указана без разделения её на части (на систематическую, случайную и погрешность от гистерезиса), и этот вариант является наиболее распространённым. Случайную составляющую указывают в случае, когда она больше 10% от систематической [4].

Дополнительная погрешность указывается в виде функции влияния внешнего фактора на основную погрешность или её составляющие: систематическую и случайную. Обычно эта функция представляет собой линейную зависимость, и тогда указывается только коэффициент влияния, например 0,05%/°С.

Динамическая погрешность указывается с помощью одной из следующих характеристик: импульсная, переходная, амплитудно-частотная и фазочастотная, амплитудно-фазовая характеристика, передаточная функция. Для минимально-фазовых цепей указывается только амплитудно-частотная характеристика, поскольку фазочастотная однозначно может быть получена из амплитудно-частотной характеристики. Для расчёта методической погрешности могут быть указаны сопротивления проводов, среднеквадратическое значе-ние или спектральная плотность помех в них, ёмкость, индуктивность и сопротивление источника сигнала, а также другие факторы, которые возникают при создании системы, включающей средства и объект измерений.

Характеристики измеряемого сигнала задаются в виде функции от времени или функции спектральной плотности. Для случайного входного сигнала задаётся спектральная плотность мощности или автокорреляционная функция. Во многих случаях для оценки погрешности бывает достаточно знания скорости нарастания входного сигнала.

Коэффициент корреляции

При расчёте погрешности измерительного канала возникает задача суммирования погрешностей средств измерений, которые являются случайными величинами. Способ суммирования будет различным в зависимости от того, являются ли случайные величины статистически зависимыми. Понятие статистической зависимости иллюстрирует рис. 1: если с ростом одной случайной величины X в среднем увеличивается (или уменьшается) и вторая (У), то между этими величинами имеется статистическая зависимость. Для её количественного описания используются понятия ковариации или коэффициента корреляции.

Рассмотрим суммирование двух случайных погрешностей Хи Ус нулевым математическим ожиданием (то есть центрированных случайных величин). Дисперсия суммы двух случайных величин по определению равна математическому ожиданию квадрата их суммы:
Когда случайные величины независимы, их коэффициент корреляции равен нулю (R^ = 0), и такие величины называются некоррелированными. Если коэффициент корреляции равен единице = 1), то между величинами X и Y имеется не статистическая, а функциональная зависимость.

Точные и интервальные оценки погрешности

Погрешности средств измерений и измерительных каналов средств автоматизации могут быть выражены двумя различными способами: с помощью точечных оценок и с помощью интервальных. К точечным оценкам относятся математическое ожидание погрешности и среднеквадратическое отклонение. В качестве интервальной оценки используют интервал погрешности, который охватывает все возможные значения погрешности измерений с вероятностью Р. Она называется доверительной вероятностью, или надёжностью оценки погрешности.

Предел допускаемой погрешности можно рассматривать как точечную оценку или как интервальную для доверительной вероятности, равной единице.

Интервальная оценка является более гибкой, поскольку она позволяет указать погрешность измерений в зависимости от того, какая требуется вероятность реализации этой погрешности для конкретных условий эксплуатации средства измерений.

Погрешность метода измерений

Для выполнения автоматизированных измерений используют датчики и измерительные преобразователи, измерительные модули ввода аналоговых сигналов, обработку результатов измерений на компьютере или в контроллере. При этом на погрешность результата измерений оказывают влияние следующие факторы:

• сопротивление кабелей;

Страница 1 из 5 Следующая

Добавить комментарий


Главная страница » Каталог статей » Статьи о погрешности » Денисенко Виктор, "Суммирование погрешностей измерений в системах автоматизации"