Поиск по сайту:
Главная страница » Каталог статей » Статьи о погрешности » Оценка абсолютной погрешности прямых измерений

Оценка абсолютной погрешности прямых измерений




Систематические  погрешности (ошибки) обычно остаются постоянными на протяжении всей серии измерений. Например, при переключении шкалы вольтметра с одного предела на другой меняется его внутреннее сопротивление, что может внести в последующие измерения систематическую погрешность.

Систематические погрешности надо стараться отслеживать и учитывать, корректируя полученные результаты,  т.е. исправляя их на необходимую величину. Однако обнаружение систематических погрешностей требует, как правило, дополнительных более точных или альтернативных экспериментов, проведение которых  невозможно  в рамках  лабораторных работ. В этих случаях достаточно указать возможный источник ошибок.

Все остальные погрешности являются случайными.  

Промахи - грубые ошибки, обычно они связаны с неправильным отсчетом по шкале прибора, нарушением условий эксперимента и т.д. Их надо отбросить. В сомнительных случаях вопрос о том, является ли данный результат промахом, решают с помощью повторного, если возможно, более точного эксперимента или привлекая математические методы обработки полученных результатов, изучение которых лежит за рамками излагаемого элементарного анализа оценки погрешностей.

Приборные погрешности определяются двумя факторами:

1. классом точности прибора, связанным с его устройством – элементной базой и принципом действия.

  Абсолютная погрешность через класс точности оценивается следующим образом:
(Dx) к.т.= (g/100)A,
 где g - класс точности в %, указанный на панели прибора,
 А= Аmax – предел измерения для стрелочных приборов, либо А есть текущее значение для магазинов сопротивления, индуктивности, емкости;

2. ценой делений шкалы прибора:

(Dx) ц.д.=  h,

где  h – цена деления шкалы прибора, т.е. расстояние между ближайшими штрихами шкалы, выраженное в соответствующих  единицах измерения.
Погрешности разброса возникают вследствие различия экспериментальных значений при многократном повторении измерений одной и той же величины. Простейший способ определения (Dх)р дает метод Корнфельда, который предписывает следующий образ действий, если физическая величина х измерена n раз:

1) имея х1 , …,хn – значений измеряемой величины х, выбираем из  хmax  и хmin и находим  среднее значение  х:
;
2) находим абсолютную погрешность Dxр =
3) Записываем результат в виде:  с , где a - доверительная вероятность того, что истинное значение измеренной величины находится на отрезке .
       Доверительная вероятность определяет собой долю средних значений х, полученных в аналогичных сериях измерений, попадающих в доверительный интервал. (Эта формула доказывается в теории ошибок.)
Недостатком метода Корнфельда является то обстоятельство, что вероятность приводимого результата определяется исключительно количеством n проведенных измерений  и не может быть изменена посредством увеличения или  уменьшения  доверительного интервала   ± Dх.   Такую возможность предусматривает несколько более сложный метод расчета погрешностей Стьюдента [2,3,7].  Последовательность расчета погрешностей этим методом такова:

1)   Вы измерили  и получили  несколько  i = 1,...,m  значений случайной 
      величины i.  Сначала исключаем промахи, то есть заведомо неверные 
      результаты.
2)   По оставшимся n значениям определяем среднее значение величины :
                                                                            i
3)   Определяем среднеквадратичную погрешность среднего значения :
       
                                   i
4)   Задаемся доверительной вероятностью a. По таблице коэффициентов
      Стьюдента (Приложение 1) определяем по известному  значению
      числа измерений n и доверительной вероятности a коэффициент 
      Стьюдента tan.
5)   Определяем погрешность среднего значения величины  (доверительный интервал)
                                  D= tan s<X>
6)   Записываем результат
= ( ± D ) с  указанием доверительной вероятности a. 

В научных статьях обычно приводят доверительный интервал
             D = s<X>,

соответствующий доверительной вероятности  α =0,7. Такой интервал называется стандартным, при его использовании часто значение доверительной погрешности не приводят. Использование  метода Стьюдента является необходимым, когда требуется знать значение физических параметров  с  заданной доверительной вероятностью (как в ряде лабораторных работ).  На практике доверительная вероятность погрешности разброса выбирается в соответствии с доверительной вероятностью, соответствующей классу точности измерительного прибора.
Для большинства исследований, в которых не выдвигается жестких требований к вероятности полученных результатов, метод Корнфельда является вполне приемлемым.
В теории ошибок показывается, что результирующая погрешность , если все эти погрешности рассчитаны для одной и той же доверительной вероятности. На практике, т.к. суммарная погрешность округляется до одной значащей цифры, достаточно выбрать максимальную из трех вычисленных погрешностей, и если она в 3 или более раз превосходит остальные, принять ее за погрешность измеренной величины, при этом фактор, с которым связана эта погрешность и будет в данном случае определять собой точность (а вернее - погрешность) эксперимента (подробнее см. в работе [1]).


Добавить комментарий


Главная страница » Каталог статей » Статьи о погрешности » Оценка абсолютной погрешности прямых измерений